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Abstract. In the EU project SAFETY4RAILS, the project partners
developed a collaborative toolkit that is able to assess and eventually
improve the resilience of rail and metro transportation and its infrastruc-
ture against various cyber, physical and combined cyber-physical threat.
In general, to improve a property of a system such as resilience, it is
necessary to assess that property first. Therefore, in this paper, we focus
on the aspect of assessing the resilience by the synergistic collaboration
of two tools out of this toolkit: CuriX, which is a tool for monitoring and
detecting abnormal behaviour of infrastructure in the presence of threats,
and CaESAR, which can asses propagation of performance losses over
distributed systems that reflects its resilience. We showcase a resilience
assessment for an exemplary scenario of combined cyber-physical threats
which is applied to a metro system. In this assessment, the main func-
tionalities and results of both tools as well as their combined usage will
be described to demonstrate how their collaboration can contribute to
an improved resilience assessment.

Keywords: Resilience · Cyber-physical threats · Detection · Impact
propagation.

1 Introduction

Resilience is the ability of a system to withstand certain crisis events. Typically,
the life cycle of the system including crisis events is formulated in a resilience
cycle that includes time before, during and after the crisis (see e.g. [5], [22] and
[9]). The monitoring and quantification of resilient behavior can be performed
e.g. by the nine-step resilience management process [10], which is an adaptation
of the ISO 31000:2018 [11]. Especially in the cyber domain, certain resilience
phases are defined, namely ’identify’, ’protect’, ’detect’, ’respond’ and ’recover’
[19].
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The quantification of resilience gets especially challenging when crisis events
happen simultaneously and the system under consideration represents an in-
terconnected critical infrastructure. A prominent example is a public transport
network including different types of transportation modes which is the focus of
this paper.

In rail operation, an increasing, number of disruptions have happened over
the last years with an increasing total duration [1]. As the problem has grown
in importance, also the scientific output on rail infrastructure resilience has in-
creased. For example, different sources for disruptions in rail operations of the
New Haven Line NYC such as electricity outages and unavailability of cars and
ways to increase the system’s resilience by taking appropriate actions, is dis-
cussed in [4]. The focus of most of the works is on quantifying the resilience
using different means such as data-driven, topological, simulation and optimiza-
tion approaches [1]. One example for a topology based analysis is the resilience
assessment of London’s metro system [3]. By analyzing the graph structure of
the metro grid, the authors were able to identify critical edges and unexpected
dependencies in the network.

In the EU project SAFETY4RAILS, a toolkit is developed to monitor rail
infrastructure before, during and after a crisis and in each resilience phase to
provide decision support (see e.g. [18]). Various risks for the infrastructure are
considered and discussed based on the threat taxonomy presented by the Euro-
pean Union Agency for Cybersecurity (ENISA) [6].

One of the tools brought to SAFETY4RAILS is CuriX (Cure Infrastructure
in XaaS), a software solution that follows a general approach to holistically
monitor technical systems (albeit with a focus on IT infrastructure). CuriX
gathers and analyses provided key performance indicators as time series data
and log files to detect abnormal behaviour to either warn from upcoming threats
or to alert current issues from threats. Another tool brought to SAFETY4RAILS
is CaESAR (Cascading Effect Simulation in Urban Areas to Assess and Increase
Resilience) which is designed to predict cascades in connected infrastructure
systems. To this end, different simulation techniques are employed to represent
the propagation of impact in infrastructure networks. The coupling of a network
model and an Agent-Based Model (ABM) (see e.g. [15], [13] and [14]) is here
further explored and applied to metro and rail networks in Ankara. For the full
list of all the tools brought into the project and the overall architecture of the
toolkit, we refer to reference [20].

Given the capabilities of the two tools, we aim to showcase a resilience as-
sessment conducted by CaESAR following a threat which impacts a certain
infrastructure and is detected previously by CuriX. We investigate a scenario
in which the aim of an attack is to physically access the premises to cut the
electricity supply to all the systems in the station, leaving it fully inoperable. In
this scenario, the power supply system with the connected Supervisory Control
and Data Acquisition (SCADA) system, responsible for controlling the electric
power and its distribution to the station, is impacted and leads to a power out-
age. Two variants of the power outage scenario are considered. In one variant,
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CuriX detects the physical access by monitoring, for instance, door sensors pro-
tecting the SCADA system and manages to warn the system manager ahead of
the power outage, which gives the system manager the chance to act ahead of
the power outage and to therefore reduce the chance of propagating the impact.
In the other variant, the power outage happens abruptly (which CuriX manages
to detect but without pre-warning) and the loss of power is unavoidable and
immediate.

In the context of this scenario, we assess the impact when considering de-
tecting and recovering capabilities for a single station in a first step and how
this affects the passenger flows in surrounding stations in a second step. The
structure of the paper is as follows: First, in section 2 a station asset network is
modeled and the topology is presented. In section 3 the methodology for threat
detection in the station is outlined. A resilience assessment for the station is
performed in section 4 considering varying conditions. Further, in section 5 the
impact on the single station is propagated in a larger public transportation grid.
Finally, in section 6 the findings are summarized and an outlook is provided.

Fig. 1. Network topology for a single station. A scenario is highlighted with an initial
impact on the SCADA (1), then equipment for electricity supply is manipulated (2),
the functionality of the station is reduced (3) and finally the trains are impacted (4).

2 Metro station model

Each train or metro station is composed of assets that are essential for the func-
tion it needs to fulfill. These assets can be computers, signaling, tracks, electricity
supply but also employees and passengers. All these assets are interrelated and



4 C. Köpke et al.

either exchange e.g. information or they impact each other in case of a failure.
Based on this assumption, an asset topology model is established. Note, as this
information is critical only an anonymised asset network is presented in this
work.

The topology model consists of assets as nodes and relations as edges. Nodes
have certain properties such as an identifier, a name, a system they belong to
and a list of nodes which they impact. This model enables to identify critical
assets based e.g. on centrality measurements. Further, the shortest path between
nodes can reveal attack or damage paths and thus the network structure enables
to model cascading effects in the system. A similar approach has been presented
for airport infrastructure in [15].

The network topology given in Fig. 1 consists of different systems. Typically,
those would be highlighted in different colors but for confidentiality reasons they
are colored grey. Once a threat is detected, the paths in the network from the
entry point to vulnerable assets such as trains and passengers can be computed
using the shortest path. The detection is described in section 3. Further analysis
of the asset topology model, cascading effects and resilience assessment is given
in section 4.

3 Threat detection

There are various detection and monitoring system types to protect assets from
cyber threats. A few of them are mentioned in reference [12]:

– intrusion detection and prevention systems for the IT network;
– endpoint detection and response for end devices;
– Security Information and Event Management systems to analyse and detect

attacks on the IT infrastructure by analysing collected log and event data
from devices, and applications;

– and also observability tools to monitor the infrastructure from rather an
operational aspect.

While many of these systems employ threshold detection and pattern matching
methods to known signatures, most of these systems are also capable of em-
ploying anomaly detection methods which do not require known signatures [12].
Methods based on anomaly detection can derive insights from the behaviour of
systems without the need of known signatures. In addition, these methods are
applicable to heterogeneous systems and are suited for both cyber and physical
threat detection such as discussed in, e.g., [2, 16, 17]. Anomaly detection methods
can provide additional capabilities, e.g., to detect up to then unknown threats.
CuriX is one of those tools aiming at the detection of known and unknown
threats in a variety of infrastructures and therefore makes use of anomaly detec-
tion methods. CuriX employs statistical and machine learning-based techniques
on time series data and log files to perform anomaly detection. Examples of the
used the techniques can be found in [21, 7]. CuriX creates a model of normal
system behaviour from the data, i.e. the regular behaviour of the system when
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used in its daily operation, and compares it to the observed behaviour. When
the observed behaviour differs significantly from the created model of normal
system behaviour, an anomaly is identified, i.e. abnormal behaviour. Since not
every anomaly indicates a problematic state of the system which could be due
to the impact of a manifested threat, CuriX provides the possibility to define
customisable criteria for critical anomalies.

Given the scenario of a physical intrusion with the intention of cutting the
electricity supply in the station by manipulating the SCADA system responsible
for electrical power in the station, which is outlined in the introduction, we define
gaining physical access to the SCADA system’s room as a precondition for the
intruders. Considering an intelligent access system for the room, where the access
is being granted and logged based on an employee card or password entry, CuriX
might be able to identify and detect any abnormal access to the SCADA system’s
room by monitoring the access data from the specific door. However, in the case
that intruders study the behaviour such as the usual entering/leaving times to
the server room and decide to act within those time frames, finding abnormal
behaviour is more challenging for CuriX. Therefore, CuriX would benefit from
additional data than just the entering/leaving times, for instance, by adding
which persons are entering and leaving at which times.

In the first variant of this scenario, we assume that a potential intrusion to
the SCADA system’s room is detected by CruiX ahead of the power outage. In
this variant, security personnel has the chance to take measures to prevent or
system managers the chance to mitigate the impact of a power outage. CaESAR
exploits this detection by conducting a resilience assessment to simulate the
potential consequences of a power outage on the train and metro network. So
far, we considered that CuriX is able to detect the physical intrusion as part
of the kill chain, however we could also consider other parts of a possible kill
chain that would lead to the same scenario outcome, for instance, cyber related
events such as port scanning for reconnaissance activities or brute force attack for
privilege escalation with the intention to perform a cyber attack on the SCADA
system instead. In such cases, CuriX would then rather analyse the systems log
files for abnormal requests in the login attempts as an example.

In the second variant of the scenario, intruders have gained physical access
to the SCADA system controlling the power supply of the station without any
prior detection from CuriX or any other detection system. They manipulate
the SCADA system to cut the electricity supply. The consequence is the loss
of availability of electrical power within the station, which could, for instance,
be identified from the station’s electric power consumption data or the power
supply’s voltage or current. We show CuriX’ identification of an anomaly as a
consequence of the power outage based on data motivated by reference [8] as
an example in Fig. 2, which again can be used by CaESAR in its resilience
assessment.
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Fig. 2. The representative electric power consumption for an example station through-
out the day exhibits an abnormal drop due to the outage of the main power supply.

4 Resilience assessment

Given a threat detection for the power outage scenario from CuriX, either prior
to or at the time of the power outage, CaESAR is capable of performing a
resilience assessment for the impacted SCADA which controls the power supply.

The detected threat impacts a certain node in the asset network model. From
there it can propagate in the network based on the edges, given the assigned
propagation probability and the impact delay (see Table 1). The propagation
methodology adopts models used in epidemology. Further, we remark that in
this resilience assessment we assess the impact on the network in the worst case
scenario when redundancy from an uninterruptible power supply is failing. The
recovery of impacted nodes is controlled by restoration times, also given in Table
1. Impact delay and recovery times vary based on a normal distribution with a
given standard deviation.

Based on the parameter settings and network setup along with triggering
events, repeated Monte Carlo simulations are performed considering the spec-
ified uncertainties. For each simulation a performance curve is obtained which
describes the performance of the network as a function of time before, during
and after an incident.

The performance p ranges between 0 and 1 and at one specific time step is
defined as

p =

∑N

n=1
pn

N
(1)

with N being the total number of nodes in the network.
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Table 1. Network model specifications

Parameter Value

Iterations 1000
Time steps T 120
Time step length 1 minute
Propagation probability 75%
Propagation probability after detection 25%
Mean of restoration time mean(tres) 60 minutes
Standard deviation of restoration time std(tres) 10 minutes
Mean of impact delay time 1 minute
Standard deviation of impact delay time 1 minute

The area A for any performance curve p(t) where t is the time is given relative
to the reference area Aref as

Aref =

∫ T

0

pref (t)dt (2)

A =
100 ∗

∫ T

0
p(t)dt

Aref

(3)

with pref = 1 for all t and T being the number of time steps considered. Prac-
tically, the integral is approximated by the trapezoidal rule. The estimate of A
enables to compare quantitatively different situations. In the following we com-
pare simulations with varying detection times td = {−1, 0, 1, 2, 6, 12, 25, 50, 100},
restoration times mean(tres) = {2, 6, 12, 25, 50, 100} and corresponding
std(tres) = {0.3, 0.6, 1.3, 2.5, 5.0, 10.0}.

Dependent on when the attack/incident has been detected and most im-
portantly has been identified, the probability for propagation in the network is
reduced (see Table 1). This reduction in propagation represents the ability to
react more specifically as the threat is identified by the detection. For example,
if an intruder is detected security personal can be activated or if a malware is
detected IT equipment can be isolated to reduce further propagation.

Fig. 3 presents some example simulation results for the resilience assessment
of a single station. Repeated simulations lead to several resilience curves with
different parameter settings. If the detection time is negative (see Fig. 3(a))
the early detection enables to avoid the impact. However, the uncertainty in
the impact propagation leads to simulation runs with minimal damage to the
system even with early detection. With a detection time of td = 6 (see Fig. 3(b))
the maximum detection time is reached. With larger td no further increase in
resilience is achieved. This is also demonstrated in Fig. 4(a).

For a mean restoration time of mean(tres) = 6 a large impact in the system
but with a short duration can be observed (see Fig. 3(c)). An increasing mean
restoration time leads to larger duration of the degraded status of the assets (see
Fig. 3(d)).
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(a) td = −1. (b) td = 6

(c) mean(tres) = 6 (d) mean(tres) = 50

Fig. 3. Example resilience curves for 1000 repeated simulations with varying (a, b)
detection time and (c, d) repair time mean and standard deviation. Performance
is based on the number of undisturbed assets. Parameter settings not specifically
adapted/mentioned in the headers are given in Table 1.
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(a) Detection. (b) Recovery.

Fig. 4. Area for 1000 repeated simulations with varying (a) detection time and (b)
repair time mean and standard deviation. The horizontal line in the box is the median.
The upper and lower outer bounds of the box represent the upper and lower quartile.
The whiskers present all data within 1.5 times the interquartile range. Outliers are
discarded in this plot. The horizontal dotted line presents the maximum area to be
expected when the system is not impacted. The measurement unit is performance
times minute.
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Comparing different parameters for detection and restoration enables to find
the optimal settings to maximize the area below the curves and thus to maximize
the system’s resilience. The summary of these findings is given in Fig. 4. Note,
that with increasing mean restoration time also the standard deviation of the
restoration time is increased. This explains the larger uncertainty in cases with
larger mean repair time (4(b)).

5 Metro and train infrastructure network

5.1 Metro grid

In this section, the previously analyzed impact on a single station, given by its
asset topology model, is now propagated and studied in the context of the train
and metro network for the Ankara public transportation system as an example.
The network topology is derived from publicly available sources such as metro
line maps. Fig. 5 presents metro and train lines for the example network with
stations defined as nodes and lines defined as edges.

Fig. 5. Ankara metro and train map.

5.2 Agent-based model

On the network structure given in Fig. 5, an ABM is developed. Generally,
ABM is a bottom-up modeling approach that starts by defining agents and
their properties [23]. The next step in developing an ABM is the definition of
internal rules [23]. Here, on each line several trains are defined which travel from
node to node along the full length of the line before returning. In each timestep a
certain number of passengers is generated with random start positions and target
stations. They generate a route in the network and switch trains if needed.
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Table 2. ABM specifications

Parameter Value

Iterations 1
Time steps 23,040
Time step length 15 seconds
New passengers per time step appox. 2.7
New passenger per day approx. 15,700
Impact on time step 8,000
Restore on time step 8,900
Trains per line 2
Maximum number of passengers per train 400

Once a Station is impacted, no train will move in or out of the station. This
effectively stops all traffic going through this station and passengers will look for
an alternative route. In this example the impact on a very central node would
sever many routes from each other, making the impact especially severe.

Fig. 6(a) shows an incident-free period. During three days passengers are
’generated’ by a simple sine-wave. In the night, there are no spawns, so the
system has time to flush all passengers. Fig. 6(b) presents passenger numbers
with an impact in the morning of day two which blocks the station ’Kızılay’ for
about one hours. This leads to a huge passenger build-up and an increase of
the total passenger amount in the peak. Still, the system manages to clear all
passengers before the next day starts.

In Fig. 6(c) the (total) difference between the current number of passengers in
the network and the usual number of passengers at the same time given by a base
value is presented. The base values are smoothed curves for normal operation
(see 6(a)). The variation from the base value is arising from the uncertainty in
route generation per spawning passenger. The impact on the second day leads
to a sharp increase in the passenger amount, surpassing the usual amount by a
huge margin.

To enable the estimate of economic loss based on the passenger deviations
during a disruptive event, the time spent per person in the system can be mea-
sured. Fig. 7 shows the amount of time passengers ’waste’ waiting for trains
which do not arrive due to the impact or are simply filled to their capacity
(which does not happen in the simulation for normal operation).

Note, if a station is not connected any more in the network it cannot be
reached by passengers. This leads to disrupted routes for the passengers. Here,
the assumption is made that passengers without possible route wait in the sys-
tem. However, in disrupted metro and train systems measures would be taken
to transport passengers in alternative means such as buses. Thus, the simulation
results underline the need for rerouting options to recover the system faster.
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(a) Normal operation.

(b) Disturbed operation.

(c) Deviation from normal.

Fig. 6. Passenger numbers over three days estimated by the ABM for (a) normal
operation, (b) disturbed operation and (c) the deviation between the base values of (a)
and (b).
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Fig. 7. Top: Additional minutes that the passengers spend in the metro and train
network due to the disruption. Bottom: Percentage of passengers that reach their target.

6 Conclusion and outlook

In this work, a methodology has been presented to quantify network resilience
for public transport infrastructure based on different impact propagation ap-
proaches and for different degree of detail embedded in the development of the
CaESAR software. The approaches are combined with anomaly detection meth-
ods from the CuriX software to improve the networks resilience, which is together
with CaESAR part of the SAFETY4RAILS toolkit. First, a single metro station
is modeled as asset topology and based on the edges attack paths can be visual-
ized and analyzed. Further, threat propagation in this network and the resulting
degradation of the station functionality can be simulated. The simulation also
enables to quantify that the earlier an attack/threat is detected, the larger are
the chances to avoid further damage propagation. Furthermore, a range of ideal
detection times can be quantified from the topology and the resilience assess-
ment. In this work, it ranges between early detection with negative values, which
means there is a good chance to avoid the impact altogether, and 6 minutes. Af-
ter that time the whole system is already impacted by the attack/threat. In the
latter case, recovery is another parameter to reduce the impact and thus increase
the resilience. Finally, we found that the interplay between detection and recov-
ery governs the response of the system and both parameters contribute to the
optimization of infrastructure resilience.

The second approach for impact propagation employed in this work is an
ABM which operates in Ankara’s metro and train network as example use-case.
It enables to quantify the passenger amounts during normal and disturbed op-
eration. Based on the additional time passengers spend in the network under
disturbed conditions, the economic loss could be estimated.



14 C. Köpke et al.

Finally, the detection and single station resilience assessment can be coupled
with the ABM metro and train model to estimate predictions for real-time de-
cision support. This framework is presented in this paper exemplary and could
be employed to the assessment of infrastructure resilience in various domains.

This paper showed that the combination of the main functionalities anomaly
detection, cascading effects analysis and ABM can contribute to resilience as-
sessments of critical infrastructures. Anyway, there are aspects worth to be con-
sidered candidates for improvements: The anomaly detection described above
was conducted in a univariate way without taking into account system knowl-
edge. In future work, we would like to consider the system model of CaESAR
within CuriX to enhance the quality (accuracy, precision) of the anomaly detec-
tion. Furthermore the simulation results of the ABM shows that time-series of
passenger flow data could enrich the anomaly detection to widen the range of
phenomena that could be recognized. Within the project SAFETY4RAILS we
have build a platform in which several tools collaborated while in this article
we exemplified the collaboration of only two tools with the additional ABM of
that platform. In future articles we plan to report also about the collaboration
of other tool-combinations.
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