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ABOUT
SAFETY4RAILS

SAFETY4RAILS  is  the  acronym  for  the  innovation
project:  Data-based  analysis  for  SAFETY and  security
protection  FOR  detection,  prevention,  mitigation  and
response in trans-modal metro and RAILway networkS.
Railways  and  Metros  are  safe,  efficient,  reliable  and
environmentally  friendly  mass  carriers,  and  they  are
becoming  an  even  more  important  means  of
transportation given the need to address climate change.
However, being such critical infrastructures turns metro
and  railway  operators  as  well  as  related  intermodal
transport operators into attractive targets for cyber and/or
physical  attacks.  The  SAFETY4RAILS  project  delivers
methods  and  systems  to  increase  the  safety  and
recovery  of  track-based  inter-city  railway  and  intra-city
metro  transportation.  It  addresses  both  cyber-only
attacks  (such  as  impact  from  WannaCry  infections),
physical-only  attacks  (such  as  the  Madrid  commuter
trains  bombing  in  2004)  and  combined  cyber-physical
attacks,  which are important  emerging scenarios given
increasing IoT infrastructure integration.

SAFETY4RAILS  concentrates  on rush  hour  rail
transport scenarios where many passengers are using
metros and railways to commute to work or attend mass
events (e.g.  large multi-venue sporting events such as
the Olympics).  When an  incident  occurs  during  heavy
usage, metro and railway operators must consider many
aspects  to  ensure  passenger  safety  and security,  e.g.
carry out a threat analysis, maintain situation awareness,
establish crisis communication and response, and they
have  to  ensure  that  mitigation  steps  are  taken  and
communicated  to  travellers  and  other  users.
SAFETY4RAILS  will  improve  the  handling  of  such
events through a holistic approach. It will analyse the
cyber-physical  resilience of  metro and railway systems
and deliver mitigation strategies for an efficient response,
and, in order to remain secure given everchanging novel
emerging risks, it will facilitate continuous adaptation of
the SAFETY4RAILS solution; this will be validated by two
rail transport operators and the results will support the re-
design of the final prototype.

PU – Public D5.2, April 2022
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Executive summary
This document reports on the results of Task 5.2, which aims to deploy an agent-based simulator
to discover possible vulnerabilities of railway and metro stations, estimate parameters useful for
risk mitigation strategies, and test the effectiveness of surveillance and security policies.

This deliverable D5.2 is a public report containing the work done on the iCrowd simulator in the
context of SAFETY4RAILS. It is targeted to wider audiences, showcasing the capabilities of the
iCrowd  simulator,  along  with  the  SAFETY4RAILS  consortium  and  the  European  Commission
together  with  evaluators  in  the  context  of  the  SAFETY4RAILS  project.  The  SAFETY4RAILS
deliverable D5.7, which is a confidential report, is an extension of this report, containing the actual
inputs that were provided by- and outputs that were calculated and provided to the end-users. It
targets a smaller audience but its content is complementary to D5.2 and should be considered
together with it.

PU – Public D5.2, April 2022
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1 Introduction
1.1 Overview

The Description of Action (DoA)  describes this deliverable as a “Report on resilience strategies for multi-
modal metro and railway systems”.

As a direct result of the work done in the context of Task 5.2, this report presents the use of a real-time
agent-based simulator for the detection of possible vulnerabilities of the resilience strategies applied in multi-
modal metro and railway systems, as well as the estimation of useful parameters such as the total evacuation
time, the average response time, and others.

This  report  aims  to  describe  the  systems,  frameworks,  and  communication  devices  that  were  used  to
implement  the  above,  and  present  the  work  that  was  done  to  extend  them  and  integrate  them  in  the
SAFETY4RAILS project. As the task 5.2 revolved around the use of the iCrowd simulator, the work that is
presented in this deliverable focuses on the features that were created or extended to facilitate a set of
simulations for the SAFETY4RAILS project.

This deliverable D5.2 is a public report.  While it  fully describes the systems and logic that were used to
evaluate the resilience strategies in question, it  does not include actual strategies, raw inputs or outputs,
interpreted results, or conclusions in any way or form. The raw inputs, outputs, and results will be part of the
deliverable D5.7 which is confidential (only for the members of the Consortium, including the Commission
Services). The high-level conclusions drawn from the raw results by the end-users will be available in the
deliverables of the respective end-users.

The target audience of this report is the SAFETY4RAILS Consortium and any other external party interested
in  NCSRD’s  iCrowd  simulator.  The  European  Commission  together  with  evaluators  are  also  targeted
audiences of the deliverable. 

1.2 Structure of the Deliverable

This deliverable is structured as follows:

 Section 1 introduces the deliverable, its structure, and its task dependencies.

 Section 2 describes the role and objectives of the simulation platform in the context of 
SAFETY4RAILS.

 Section 3 presents the iCrowd simulator on which the simulation platform is built, and the extensions 
that were implemented in the context of this project. This covers the work that has been done in task 
5.2.

 Section 4 presents the integration of iCrowd with other tools of the SAFETY4RAILS project.

 Section 5 provides the summary and conclusions of this report, along with potential future work that 
can be done to further improve the simulation platform.

1.3 Task Dependencies

The deliverable depends on the results of the following tasks:

• Task 1.2: Tool requirements

• Task 1.4: Data collection

• Task 2.3: Overall architecture of the S4RIS platform and its data exchange system

• Task 2.5: Original use-cases

• Task 3.1: Identification and characterization of cyber (-physical) systems and threats in railway 
environments

• Task 4.5: Cascading effects for interconnected infrastructures, integration with other tools

• Tasks 8.1 and 8.2: Simulation exercises

PU – Public D5.2, April 2022
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2 Role of Simulation in SAFETY4RAILS
2.1 Role in Each Resilience Phase

The role of the iCrowd simulator in the context of SAFETY4RAILS is to be used for the detection of possible
vulnerabilities in multi-modal railway and metro stations, extract useful metrics for their evaluation, and by
doing so provide a risk assessment tool to develop better resilience strategies for the safety and security of
the users of such infrastructures.

This is achieved by simulating the impact of cyber-physical threats on metro and railway stations, taking into
account  the  crowd’s  behaviour,  external  interconnected  infrastructures,  simulating  realistic  information
propagation  models,  and  using  the  infrastructure’s  current  surveillance  and  security  policies,  such  as
evacuation processes, CCTV systems, security personnel positioning, etc.

The  iCrowd  simulator  is  used  only  during  the  prevention  phase  of  developing  and  testing  resilience
strategies,  but  contributes  to  more  of  them  by  simulating  them.  A  detailed  description  of  iCrowd’s
functionalities for each of the relevant phases1 is shown in  Table 1. Cross-cutting “mitigation” in  Table 1
illustrates the functionality to test different mitigation measures.

PREVENTION DETECTION RESPONSE

Predict waiting and service times 
and detect bottlenecks to 
determine the infrastructure’s 
ability to handle high congestion 
levels.

Examine the effects of ineffective
guards (due to distractions). 
Verify or disprove the sufficiency 
of security and/or safety 
measures in place that prevent 
accidents or malicious 
behaviours when guards are 
unavailable.

Aid in detection capabilities by 
detecting blind-spots because of 
guards’ movements and/or 
insufficient number of cameras.

Improve positions and movement 
patterns of guards by simulating a 
malicious actor accessing a 
restricted area and determining 
the average time-to-detect and 
time-to-intercept.

Simulate an evacuation and 
examine the crowd’s 
behaviour, positions, and 
movements in such conditions 
to determine the best possible 
movement patterns for 
security personnel.

MITIGATION

Simulate an evacuation and assess the performance of resilience strategies applied in such conditions.

Measure the efficiency of mitigation strategies that rely on digital assets (e.g. electronic boards).

Table 1: iCrowd's contributions per resilience phase

2.2 Contribution

As a result  of  tasks 2.5,  8.1,  and 8.2,  a set  of  Use-Cases (UCs)  were created in  coordination  with the
consortium, based on which, presently, 2 detailed simulation exercises were defined; the MDM and EGO
simulation exercises. Each of these detailed a scenario which would use a subset of the tools participating in
the project to demonstrate a set of resilience capabilities.

iCrowd contributes to the development, implementation, and validation of resilience and mitigation strategies
by simulating both exercises.  The simulation scenarios were based on the top-level actions as they were

1 In other SAFETY4RAILS documents, resilience is represented by the 5 phases: Identification, protection, detection,
response  and  recovery.  In  the  D8.2  for  the  planning  of  the  simulation  exercise  at  MdM  and  EGO  the  phases
identification  and  protection  were  simplified  into  a  combined  phase  “prevention”.  Considering  the  fuller  5  phase
representation of resilience listed here, iCrowd is most suitable for application during the identification and protection
phases.

PU – Public D5.2, April 2022
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defined in D8.2, which were followed as accurately as possible. The simulated scenarios regarding input,
outputs, programmed flow, 3D models, and contributions, are presented in Deliverable D5.7.

The overall functionality that is provided by iCrowd is the following:

 Determine  infrastructure’s  ability  to  handle  high  congestion  levels:  Simulate  large  crowds
entering and exiting  the station  in  normal  circumstances  and  in  case  of  emergency  or  schedule
disruption.  Eventually,  provide  a  visualization  of  the  overall  movement  patterns  and  congestions
levels, all within the graphical user interface of the simulator.

 Study schedule disruptions' impact on agents’ flow rate: Deactivate the arrivals and departures of
trains in a simulation and inspect how the crowd moves around the station during high congestion
levels.

 Detect  and reduce crowd bottlenecks:  Simulate  large crowds moving in  the same direction or
towards the same target and visualize the congestion levels and pressure levels using heatmaps, in
order to better understand the weak points of the station and better set up the available space.

 Validate  and  improve  CCTV  systems:  Simulate  cameras  and  guards  moving  around  the
environment  and  provide  heatmaps  and  statistics  regarding  the  detection  of  malicious  actors.
Simulate malicious  actors by implementing real-time dynamic  detection evasion and examine the
resulting movement trajectories. Provide data to eventually  improve the coverage of the available
space whilst minimizing the required resources.

 Validate and improve evacuation processes: Execute simulations based on real measurements to
establish a baseline, and then run more simulations with adjusted parameters to examine alternate
evacuation processes.

 Implement and measure user-defined KPIs:  Provide end-users with realistic  measurements for
their own KPIs for every strategy they wish to evaluate that may be difficult or even impossible to
obtain in real life.

 Provide  a  test-bed  for  the  development  of  security  and  safety  measures  and  mitigation
strategies:  Run time-scaled simulations to visualize the results of the disruption and fallout of an
attack, and the application of the studied strategy. Provide an overview of how the scenario unravels
in fast-forward,  observe the effect  of real-time adjustments to the simulation and determine chain
reactions. Reduce the cost of developing and testing new safety measures and mitigation strategies
by reducing the need for physical trial runs with actual people.

2.3 Requirements

In the following table, the requirements defined in Deliverable D1.4 are listed along with their development
status.

Req. ID Name Status Comments

iCrowd_01 Simulate realistic congestion levels Completed Available from previous projects

iCrowd_02 Simulate an evacuation because of 
terrorism or natural disaster

Completed Available from previous projects

iCrowd_03 Simulate crowd behaviour considering 
cyber-agents

Implemented but 
not tested

Scenarios for upcoming 
simulation exercises should be 
adapted to include this 
functionality

iCrowd_04 Detect blind-spots because of guards’ 
movements or insufficient cameras

Completed See Detection Layer at section
3.4.2

iCrowd_05 Simulate access to a restricted area by
cyber-attack or physical attack

Completed Part of the EGO scenario

iCrowd_06 Guards’ distraction simulation Implemented but 
not tested

Scenarios for upcoming 
simulation exercises should be 
adapted to include this 
functionality

PU – Public D5.2, April 2022



10

iCrowd_07 Conformity with overarching and 
S4RIS platform specific requirements

Completed iCrowd runs independently from 
other tools
Communication is done through 
DMS (see section 3.4.6)
User-programmable via Lua 
scripts
iCrowd user manual is available

Table 2: Development status of iCrowd requirements as per D1.4

The new functionalities that were developed to cover the above functionalities are described in section 3.4.

PU – Public D5.2, April 2022
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3 iCrowd Simulator
3.1 Overview

The iCrowd Simulator [1]–[4] of the National Center for Scientific Research «Demokritos», initially designed
and developed in the context of the TASS Project2, is a general purpose Agent-Based modelling platform
aiming to provide an abstract, domain-agnostic simulation framework. It implements a modern, multithreaded,
data-oriented  simulation  engine  employing  the  latest  state-of-the-art  programming  technologies  and
paradigms.

iCrowd is based on an extensible architecture that separates core services from the individual layers of agent
behaviour, offering a concrete simulation kernel designed for high-performance and stability. Its primary goal
is to deliver an abstract platform to facilitate the implementation of several agent-based simulation solutions
with applicability  in many domains of knowledge, including but  not limited to crowd behaviour simulation
during evacuations and social behaviour simulation and modelling.

Thanks to its high performance parallel  execution model,  iCrowd is capable of  handling very large-scale
crowds. It can be utilized in any area such as building interiors and exteriors, stadiums, public places like
squares, open-air festivals, or even a small city. It can be deployed on a single system with consumer-grade
hardware for simple simulations, or on more advanced clusters to facilitate more complex scenarios in real
time. The latter is achieved by distributing parts of the workload (entities, behaviours, physical spaces) across
multiple compute nodes.

Some key technical features are the following:

 High performance parallel execution model developed in C++14, with a standards-compliant, cross-
platform (Win32, Linux, MacOS) codebase

 Intelligence model using Behaviour-Trees [5]–[8]

 High-precision autonomous movement model based on ClearPath [9]

 Autonomous collision avoidance system based on Velocity Obstacles [10] and social forces [11], [12]

 Extended connectivity support (raw TCP streams, HTTP APIs, Apache Kafka [13] integration)

 Scriptable through an embedded Lua interpreter [14]

To construct the simulation environment, iCrowd uses a 3D model of the infrastructure of interest, given in
OBJ [15] file format. There is no need for any annotations or extra information within the OBJ file, as any
navigation-related information is automatically calculated. In cases where no specific infrastructure needs to
be simulated,  for  example if  only the interaction of  the agents with specific  assets is  of  interest,  then a
simplistic and generic layout can be used instead.

3.2 Architecture

The  iCrowd  simulator  is  based  on  a  modular  architecture  that  builds  on  the  Entity-Component  design
paradigm. This allows the separation of the core services of the simulation engine from the distinct Layers
that comprise each agent’s profile and behaviour. Thus, the main processing kernel that deals with resource
allocation and processing synchronization is separated from the individual behaviour implementations that
usually deal with higher level functionalities (steering, pathfinding,  intelligence, communications etc.).  The
simulation  engine  acts  as  an  orchestrator  for  the  distinct  Layers,  which  may  function  individually  or  in
cooperation with one another.

Everything that can be regarded as an ‘active’ element of the simulation is an Entity and has very basic
functionality.  Complex  behaviours  are  provided  by  plug-in  modules.  Even  the  most  fundamental
functionalities such as the Physical movement or the Intelligence of an entity are modelled and programmed
separately. This is achieved by populating Entities with Components provided by Layers that reside outside of
the simulator’s core. Each Entity has a set of Components, and each Component is part of a Layer. This is
shown in Figure 1.

2 For more information visit https://cordis.europa.eu/project/id/241905/fr

PU – Public D5.2, April 2022
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At every simulation step, each Layer updates itself  and all  of  its Components,  independently  from other
Layers. Synchronization mechanisms are in place to enable Layers or Components to cooperate with each
other.

3.2.1 Modules

Entities can have one or more attached Components, provided by the associated Layer. A Layer is a module
that implements or retains global functionality or information, while the Components of each Layer implement
or retain entity-specific functions or data. The collection of Components for each entity forms the basis of the
entity’s behaviour and state. Each Layer and its respective Components provide their entities with a different
functionality by implementing various functions, keeping any relevant data, and possibly coordinating with
each other. Each module can also have a network interface and/or an Inspector Observer. The network
interface of a layer is a list of parsers of messages and a list of serializers of events, that can be used to
receive or send messages through iCrowd’s Network Communication System (see Network Communication).
An Inspector Observer is a GUI that is visible to the user in a global menu or a selection window of an entity
and is used by the Inspector module (see Visualization). The iCrowd simulator offers the following modules:

 Physical  Layer:  Components  of  this  layer  implement  kinetic  and  physical  behaviour  and  are
responsible for providing their Entity with its physical characteristics such as mass, dimensions as well
as making it behave as a real-world object affected by forces. Entities that represent agents always
have a Component of this layer, but entities that represent checkpoints, for example, may not.

 Routing Layer: This Layer’s components provide routing and path-finding capabilities to their entity
as well as bindings for other Components that need to perform such requests. The Layer itself creates
and maintains a navigation mesh during initialization and shares it with all its components. The actual
path-finding is done on a per-entity basis as the navigation mesh can be locally tweaked by enabling
or disabling parts of it  on the fly for a specific entity.  See  Routing via Navigation Mesh for more
information.

 PathBlock Layer:  This Layer’s Components keep a navigation filter for their entity,  enabling it  to
block a specific area of the environment for any reason. For example, a passenger in an airport might

PU – Public D5.2, April 2022
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be prohibited from moving in a restricted area, so the entities that represent passengers will use the
PathBlock Component to block that area. A second example would be that no agent can move in an
area because it is on fire. The PathBlock Layer, in this case, will maintain a list of areas that are on
fire, and all of its Components will block anything that is on that list. This functionality can be extended
by having the Component use this list only when the entity has been notified about the fire.

 Proximity Layer:  The Components of this Layer gather and maintain proximity-based information
about their entities. This type of information includes, for example, a list of other entities which are
close-by.

 Steering Layer: A Steering Component makes use of its entity’s Proximity Component and alters its
desired velocity (targeting the entity’s final destination) in such a way as to avoid collisions with other,
stationary  or  moving,  entities  that  are  nearby.  This  Layer  can also  be used to  implement  social
distancing by adjusting its collision avoidance radius and resolution forces. See Collision Avoidance
for more information.

 Injury Layer:  Each Injury Component  uses an injury  model  (currently  based on levels  of  carbon
monoxide, soot, and heat) to calculate the physical state (in terms of injuries sustained) of its entity. It
can,  therefore,  alter  many  of  its  entity’s  Physical  Component’s  parameters,  such  as  top  speed,
navigation abilities, etc.

 Pressure Layer:  Components of this layer use a pressure model to calculate the total amount of
pressure exerted on their entity as well as the pressure transmitted through it to other entities. High
levels of pressure can cause injuries to an agent (see Injury Layer).

 Intelligence Layer:  Components  of  this  Layer  run  the behaviour  tree of  their  entity.  Essentially,
Intelligence Components endow the simulator’s entities with intelligent behaviour, enabling it to make
decisions, set targets, and adapt to their environment. See  Behavioural Modelling with Behaviour-
Trees for more information.

 Control Layer: Components of this Layer provide the user with control over the underlying entities.
Such control would be to move them using the mouse or keyboard.

 Base Communication Module: This module implements the distributed simulation functionality of the
simulator while also enabling external systems to cooperate with iCrowd.

 Detection Module: This module implements object detection for entities that represent cameras or
guards.  It  uses an adjustable realistic  field of  view,  and takes into account obstructions from the
geometry  (such as walls)  as  well  as from the crowd or  other  entities.  This  module  also  records
statistics and renders field-of-views, visible walkable areas, and heatmaps.

 Corridor Module: This module is used to create entities that agents can walk within, such as stairs
and escalators. The module enables an agent to walk faster or slower when walking on an escalator
according to its movement direction, while the functionality itself can be enabled or disabled during
runtime by the user. The module also collects statistics about such corridors.

 Checkpoint Module: This module is used by entities that represent checkpoints, something that can
be visited by another entity. It implements a FIFO queue, can be enabled/disabled automatically or
manually by the user, and collects statistics about its entities and service history.

 S4R Module:  This module implements functionality that is specific to the SAFETY4RAILS project,
such  as  the  integration  with  other  tools  and  the  visualization  of  any  related  information.  It  also
facilitates behaviours that are specific to the SAFETY4RAILS-related scenarios.

 DMS Module: This module implements the integration of iCrowd with an Apache Kafka [13] server. It
can log in, subscribe to topics, post to topics, and poll for data. It provides a callback mechanism for
other modules to receive data, and exposes a simple function for other modules to post data.

 Inspector Module: The Inspector module visualizes the simulation by drawing the 3D geometry and
entities. It also provides a basic GUI for the user to manipulate the simulation’s state, and provides an
interface (based on the Inspector/Observer architecture) for other modules to show their own GUI as
part of a menu. See Visualization for more information.

 Visualizer Module: The visualizer module is only a network interface that provides an API for agent
creation, fire creation, environment setup, and agent manipulation during runtime to facilitate the use
of an external Visualization Application.
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3.2.2 Network Communication

The  simulator  implements  its  own  Network  Communications  System,  providing  bi-directional  data
communication  through  TCP  or  UDP,  unicast  or  multicast.  Through  this  system,  iCrowd  provides  a
communication interface, an API, making it possible to integrate and/or interact with other software platforms.
Thus,  it  can  be  used  to  provide  input  to  other  systems,  receive  output  from  other  systems  (sensors,
databases, simulators), or both.

The network communication system implements a simple and flexible JSON protocol. The protocol states
that each message starts with a header of constant size which is followed by the actual message. Both the
header and the message need to be in a standards-compliant JSON format. The header includes the type
and  size  of  the  message,  informing  the  iCrowd  simulator  about  the  intended  recipient  (module)  of  the
message. The size of the message is needed because of the way that TCP sockets work. Specifically, we
need to know how many bytes of data we want to read from the connection, because there is no other way to
know when a message has been fully received. If we attempt to read more bytes than are available, the
program will block indefinitely, and if we read less bytes we will receive a malformed incomplete message.
The same logic is used in many low-level network communication protocols. Following the header is the
message, which can be any JSON-formatted text.

To  avoid  sending  unnecessary  data,  all  JSON objects  are  not  formatted  for  visibility  with  spaces  and
indentations, meaning that there are no spaces or new-line characters between the JSON elements. This is a
hard requirement for the header, since it needs to have an exact predetermined size.

A network communication interface is provided by a module of the simulator. This module can also contain a
Layer that gets affected by incoming messages or may generate outgoing messages. Upon initialization, a
module can be set to function as a server by listening on a TCP port, and can also be set to function as a
client by setting a list of hosts and TCP ports it should connect to. Any message that arrives through any of
these connections  will  be  parsed  by  the module,  and  any  event  that  occurs  within  the  module  will  be
serialized  by  the  network  interface  and  be  sent  to  all  of  these  connections.  Ultimately,  the  network
communication interface of a module is described by a list of message parsers and event serializers.

An important communication interface is the one that is provided by the Base Communication module. Its
network interface serializes and sends messages for events that include but are not limited to:

 Pause/Resume: The simulation has been paused/resumed.

 Entity created: An entity has been created. The message includes any information that is necessary
for its creation, along with any information that was passed to its components for their initialization,
providing support to duplicate the operation in another instance of the simulator.

 State changed: A property of an entity has been changed. The message includes the id of the entity,
its updated properties, and the timestamp at which the event occurred.

 Entity deleted: An entity has been deleted. The message includes the entities id and the timestamp
at which the event occurred.

 Camera view change: The user has moved the camera. The message includes the new coordinates
and view angle of the camera.

 Time-scale change: The user has changed the time-scaling of the simulation. The message includes
the new time-scaling.

 Heartbeat: The time step of the simulation has changed. This is used for synchronization with other
systems.

At each time step, each Component of the Layer records the changes that have been done to its entity,
serializes them into a JSON packet, and sends it to any connected clients through the network interface.
These messages are also retained,  so any clients that connect to the simulator  after the simulation has
progressed will still receive all relevant state updates. The module also sends and receives messages about
generic  functions  like  pausing/resuming,  adjusting  the  time  scaling,  creating/deleting  entities,  etc.  The
module’s communication is bidirectional, i.e. its outputs can be fed into another instance of itself, achieving a
perfect duplication of a simulation’s state. See Distributed Simulation for more information.
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3.2.3 Embedded Lua Interpreter

As previously stated, iCrowd is domain-independent. Starting the simulator by itself will launch only the core
engine of the simulation, without any 3D geometry, layers, or entities. These are all loaded and configured in
a script file that iCrowd loads upon initialization. This script is written in the Lua programming language [14], a
human-readable language that is designed for scenario scripting and requires little programming experience
and knowledge. In this script file the user can load a 3D object to be used as the environment, install and
configure any layer they need, install the Inspector if needed, and finally start the simulation. Overall, the
functionality of a Lua script includes:

 Engine  configuration:  Settings  indicating  the  simulation’s  frequency,  log  level  detail,  maximum
number of entities that can be created per simulation cycle.

 Modules  configuration:  Settings  for  each  module  separately.  There  are  global  settings  that  all
modules  can  receive,  like  tick  period,  multithreading,  etc.,  and  each  module  can  have  its  own
specialized inputs. Every module that provides a network interface can also get settings about its
network configuration, namely what port it should listen to as a server, where it should connect as a
client, and other specialized settings. The Inspector, being a separate module, is also installed and
configured if needed.

 Operational configuration:  Settings indicating  the location of  checkpoints,  the overall  number of
agents, when and where the agents should be created, and scheduled events.

Each module exposes its own interface to the Lua scripting mechanism. Within a Lua script, the user can
create a module as an object and, after installing it by passing it to a special function, they can keep it for
reference to set  it  up as required and even pass it  as a parameter to other modules.  For example, the
Routing Layer is always kept as a reference and gets passed to other modules that need it. The Intelligence
Layer  exposes  a  complete  API  for  each  behaviour  tree  generation,  so  the  user  can  define  their  own
behaviours directly within the Lua script and attach it to any entity.

The scripting mechanism exposes a schedule function that enables the user to specify an action to happen
when the simulation reaches a defined timestamp, and can be used to simulate events, such as a bomb
being detonated at a certain point in time, or facilitate a uniform flow of passengers, for example to create an
agent every 2 seconds instead of creating them all at once.

Scheduled actions can be recursively rescheduled, so one could create a function that checks for an event
and reschedules itself if it has not occurred yet, thus monitor for an event and adapt the scenario accordingly.

The scripting mechanism enables the user to create and set up entities as required, each with their own
properties and Components. In the context of SAFETY4RAILS, the user might either be NCSRD or any other
partner of the consortium that has been trained by NCSRD as described in section  3.5. A fully functional
scenario containing agents, interactive objects, behaviours, and its entire flow can be created from a single
Lua script. For the SAFETY4RAILS project, 2 such scripts were created to simulate the full MDM and EGO
scenarios as described in Deliverable D5.7.

These scripts included:

• The initialization of the simulation’s parameters and modules.

• The creation of static assets, such as stairs, escalators, cameras, and turnstiles.

• The initial and repetitive creation of agents.

• The initial creation of a bomb in a predetermined location.

• A random loitering process for all agents.

• The bomb detonation.

• The random realization of  agents in the station that  the train is not coming and them exiting the
station.

• The blocking of the station’s doors and turnstiles.

• The confusion and random movements of agents in the station.

• The release of the station’s doors.

• The start of an evacuation.
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• The routing of the agents to the safe areas.

• The gathering of statistics.

• The automatic pausing of the simulation when all agents have reached the safe areas.

3.2.4 Visualization

For the simulation inspection and control, the simulator offers an OpenGL-based visualization system with a
native GUI based on our  Inspector-Observer architecture.  The Inspector  itself  is  responsible  for  window
creation and user interactivity, but its main job is the rendering of the 3D environment with all entities that
reside in it. The user can use their mouse to move, zoom, and rotate the camera, and can also choose to
have the camera automatically follow a certain entity. Using their keyboard or mouse, the user can pause and
resume the simulation, change its time-scaling property to fast forward or slow down the simulation, and have
a cursor at their disposal which can be attached to any point of the geometry to be referred to by other
functions. The Inspector provides a main menu that contains generic settings concerning the visualization of
the geometry. It also provides a searchable list of entities that can be used to find and select an entity. Upon
selecting an entity,  the Inspector provides a selection window that contains all  information related to the
entity. This includes its name, ID, position, velocity, heading, list of tags, and more. The user also has the
option to delete the selected entity with the click of a button.

The Inspector provides any loaded modules/layers to display their options in the main menu and the selection
window by implementing and attaching an Observer. Typically, each Layer will have its own Observer which
gets plugged in the Inspector upon the Layer’s initialization. An Observer is the implementation of at least 2
functions: one that displays a GUI for the main menu and one that displays a GUI for the selection window.
There are more functions that an Observer can implement, such as the render function that a Layer can use
to render something on the 3D geometry. This is used, for example, by the S4R Layer to render the results of
bomb explosions as they are received by the BB3D tool [16] (see BB3D). An Observer can also create and
display its own windows if required, as is the case with the Intelligence component which can render the
behaviour tree it is using. Usually, these GUIs are only concerned with data from their associated layer or
associated entity’s component, and can expose adjustable settings or any kind of information that the layer or
component has saved to the user. The Inspector provides an easy API to the Observers, allowing them to
access information about the selected entity, the cursor position, etc. An Observer can also interact with the
Inspector, for example by setting the currently selected entity or the cursor’s position.

Overall, the Inspector enables the user to see the simulation and interact with its entities and the underlying
components and layers through a simple and easy GUI.

3.2.5 Distributed Simulation

Using iCrowd’s Network Communication System, we can connect multiple instances of iCrowd and have
them work together  [2].  This can facilitate the distribution of the simulation’s workload to more than one
instance, each one of which can be running on a different machine. The simplest way of work distribution with
iCrowd is having one instance run the various modules for a simulation without running the Inspector, and
then  have  another  instance  connect  to  the  first,  fetch  the  simulation’s  status  updates  and  visualize  it,
effectively  moving  the  rendering  workload  to  a  different  machine.  This  can  facilitate  the  use  of  a  high
performance computer to run the bulk of the computations for the actual simulation and a local consumer-
grade system to visualize and inspect the simulation.

This kind of functionality opens the iCrowd simulator to a world of work distribution possibilities, where the
workload that is being distributed is not only the visualization of the simulation, but rather entities, layers, or
even parts of the 3D space, enabling iCrowd to scale to many systems and potentially simulate hundreds of
thousands of agents in real time without the need for a supercomputer.

3.2.5.1 Implementation

To participate in a distributed simulation, an iCrowd instance uses the Base Communication Module which
provides messages about entities creation, deletion, state updates, along with more generic events such as
pause/resume, time scaling, etc. The information contained in these messages can be used to duplicate an
iCrowd instance, and keep all instances synchronized.

The  simulation’s  workload  can  be  distributed  statically  based  on  entities.  A  specialized  implementation
ensures that  only  one iCrowd instance will  handle  the creation,  update,  manipulation,  and deletion  of  a
specific entity, while the rest of them will only retrieve its information to use for collision avoidance, proximity
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information,  decision making,  and visualization.  The assignment  of  entities to instances can be done in
various  ways,  like  the role  of  the  entity  (human-sensor),  the role  of  the  entity  as an agent  (citizen-civil
protection), or randomly according to the time of creation, to name a few. This will distribute the simulation’s
workload based on its entities and will usually achieve the best load balancing. Alternatively, we can assign
entities to iCrowd instances according to the entity’s position within the 3D geometry. This would be useful in
a  case where  each  instance  visualizes  only  one  part  of  the  geometry  and  focuses  on that,  while  also
rendering the rest of the crowd and interacting with it.

Any number of simulation instances that work together need to be synchronized during the entire scenario
unfolding. It is expected that no two will run naturally at the exact same simulation time for various reasons
(different machines, loads, specs, to name a few). As a result, to achieve a realistic simulation, we need to
ensure that all instances are always synchronized, i.e. running at the same timestamp. The implementation is
quite simple as the protocol supports bidirectional messages, and consists of a set of primitive rules: (a) Send
a heartbeat message periodically; the smallest the interval, the better the resolution; (b) receive heartbeat
messages from other instances (c) If a received heartbeat carries a timestamp smaller than the host’s current
timestamp, pause host for a time period equal to the difference of received timestamp and current timestamp.
Implementing the algorithm, all simulators will always operate in sync throughout the entire execution.

3.3 Autonomous Agent Simulation

Every agent within an iCrowd simulation is completely autonomous. It can move, navigate, avoid obstacles,
set targets, and interact with its environment or other agents, without any input from the user. This concept is
implemented by the functionalities described in the following sections.

3.3.1 Routing via Navigation Mesh

The Routing Layer provides entities with their own autonomous navigation system. The whole process is
based on building a navigation mesh. A navigation mesh is a set of interconnected polygons spanning the
entire walkable area of a given 3D mesh. The generation of the navigation mesh is done automatically based
on the geometry that has been given as input to the simulator, taking into account agents’ properties such as
their height and radius along with other settings such as the maximum allowed slope and climb. Once the
navigation mesh has been built, a graph is generated with a node for each polygon and edges from that node
to all other nodes representing polygons adjacent to the initial polygon. One can then route from any point

inside a polygon to any other point  inside a polygon by running the A*-algorithm  [17] on the graph and
producing a sequence of waypoints to be followed. In Figure 2 we can see a sample of a navigation mesh as
it is constructed by the iCrowd simulator.
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Each agent generates a sequence of waypoints to be followed when a target is set and then, at each time
step of the simulation, sets its desired velocity directly towards its next waypoint. This velocity will probably be
adjusted by the Steering Layer to avoid local collisions but the agent will always try to reach that waypoint.
Every agent periodically refreshes their route to account for new information.

3.3.2 Collision Avoidance

iCrowd provides a realistic simulation of humans’ physical movement in an area with obstacles and low/high
crowd congestion, by implementing a collision avoidance mechanism and taking into consideration social
forces that naturally apply when someone is moving among other people. This is achieved by a model of
movement for each agent, which is implemented by applying standard Newtonian Forces and interactions
between agents, consisting of the Social Forces model [11], [12]. Initially we used the Social Forces model
which roughly  applied  Newtonian  forces on each agent,  calculated  the acceleration  from their  sum and
integrated to get the agent’s new position. The additional feature of our model is that apart from applying
forces on agents with respect to other agents’ positions, we linearly interpolate – under specific conditions –
with a force originating from the general movement of agents nearby.

Our current movement model is based on the ClearPath model  [9]. The model in question is based on the
Velocity Obstacle (VO) [10],  [18] of  one agent onto another.  The Velocity  Obstacle VOA(B) of  agent  A
because of agent B is the set of all velocities which will result in a collision with B at some time in the future. A
VO depends on both agents’ positions and velocities. An agent can calculate one VO for each agent within a
certain distance of them. The union of all VOs of an agent is its  Potentially Colliding Region (PCR)  [9].
Simply put, the PCR is the set of points that, when the entity approaches will cause a collision with a nearby
entity in the near future. It can be shown that if an agent’s desired velocity rests outside its PCR then no
collision will occur for that agent with its nearby agents in the near future. If, however, its desired velocity
resides inside a PCR, a collision is imminent and the agent must alter its velocity. At this point, the agent will
adjust its velocity to the closest point that resides on the border of its PCR. 

The above functionality is provided by the Steering Layer. Each agent considers the current position and
velocity of nearby entities to proactively adjust its course to avoid a collision, providing the agents with the
ability to walk around the simulated area autonomously, avoiding each other and any static obstacles. The
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Steering Layer also allows the user to adjust the collision radius and collision resolution forces. This can be
used to tune the Layer itself, but can also be utilized to implement social distancing, because with a higher
collision radius the agents will be forced to stay further away from each other. This can be useful for use-
cases that involve the transmission of a contagious disease and can facilitate such research questions.

In Figure 3, we can see, drawn by the yellow cones, the Potentially Colliding Region (PCR) that has been
calculated for the selected (red) entity by its Steering Component. Based on the positions and velocities of
the 2 nearby agents (yellow), the 2 VOs that are shown as separate cones have been calculated for the
selected agent. The cone on the right is related to the yellow agent inside it and the way it was calculated is
obvious. The cone on the left, however, appears to be detached from the yellow entity that caused it. This is
because, for the calculation of the VO, we consider not only the position, but the velocity of the agent as well,
so since the agent is moving towards the left of the red agent, its VO has been adjusted accordingly.

In the selection menu on the right of Figure 3 we can see the desired velocity that has been calculated by the
Routing Component, and the adjusted velocity which has been calculated by the Steering Layer. The two
velocities are also rendered as arrows originating from the position of the entity, with red being the desired
that will eventually cause a collision, and green being the adjusted one that will be used. We can see that the
desired velocity is within the PCR, and the adjusted velocity is exactly on the PCR’s border.

3.3.3 Behavioural Modelling with Behaviour-Trees

The iCrowd simulator is equipped with the Intelligence Layer, which uses behaviour trees [5]–[8] to accurately
describe the behaviour of an entity, giving it a notion of intelligence in the form of an interdependent cycle of
goal setting, succeeding or failing. These were first developed for games and were later formalized using
standard robot control theory tools. In general, a behaviour tree is a directed tree with one root node. Each
node can be of two types: decorator (or internal) and leaf node. Decorators specify the order and type of
execution of their  children and leaf nodes specify actions. For our model,  we followed  [8] in their formal
definition of behaviour trees. 

The execution of a behaviour tree starts from the root which sends ticks with a certain frequency to its child. A
tick is an enabling signal that causes the execution of a child and within the simulation environment follows
the simulation frequency. When the execution of a node in the behaviour tree is triggered, it returns to the
parent a “running” status if its execution has not finished yet, “success” if it has achieved its goal, or “failure”
otherwise.

Behaviour trees can be combined, and there are special types of trees (nodes) that can combine other trees
to express more complex meanings. Those combinators are the following:

 Sequence: Ticks all of its children sequentially until one of them fails. When one fails, the Sequence
block fails. If they all succeed, the Sequence block succeeds.

 Select:  Ticks all  of  its children sequentially until  one of them succeeds. When one succeeds, the
Select block succeeds. If they all fail, the Select block fails.

 Repeat Until Fail: Ticks its only child until it fails. The Repeat Until Fail block always succeeds.

 Repeat  Until  Success:  Ticks  its  one  child  until  it  succeeds.  The  Repeat  Until  Success  always
succeeds.

 Parallel Sequence: Ticks all of its children in parallel, until one of them fails. When one fails, the
Parallel Sequence block fails. If they all succeed, the Parallel Sequence block succeeds.

 Parallel Select: Ticks all of its children in parallel until one of them succeeds. When one succeeds,
the Parallel Select block succeeds. If they all fail, the Parallel Select block fails.

 Invert: Ticks its only child until it finishes and returns the opposite result.

 Succeed: Ticks its only child until it finishes and then succeeds.

 Fail: Ticks its only child until it finishes and then fails.

The combination of any number of distinctively defined behaviours in a well-defined yet flexible sequence
results in behaviour models that are reusable, easily extendable and modular. This hierarchical composition
of behaviours also allows for a user-friendly and intuitive representation; the behaviour-tree diagram of a
high-level behaviour is composed of a behaviour set of lower complexity which is abstracted at the high level
diagram. 
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Essentially, Intelligence Components endow the simulator’s Entities with intelligent behaviour, enabling them
to make decisions, set targets, and adapt to their environment. Each entity has its own behaviour tree and
thus can have completely different behaviour from the rest of the entities. Additionally, a single behaviour tree
may be traversed in many ways, depending on its structure and the simulation’s state at any time. Agent
might, for example, decide to walk to a point of interest and wait there, or find the closest safe area and flee
there. This will be decided at the moment that it is needed, depending on whether the agent knows about an
evacuation or not. Using parallel decorators, a process such as waiting can be interrupted by events, so an
agent  standing  in  a  point  of  interest  may  abandon  it  early  because  they  were  just  notified  about  an
evacuation.

An entity utilizing the Intelligence Layer, being either an agent or a stationary object, can perform actions,
programmed either by the developers of the platform or by the end user. Using behaviour trees, we can
“program”  the  agents  to  make  decisions  based  on  their  interaction  with  other  entities  and  then  move
accordingly.  Each entity  in  the simulation  can have a  different  behaviour,  which enables  us to program
different  types of  people (such as general crowd, officers,  guards) or  different  types of  objects (such as
sensors, doors, etc.). In  Figure 4, a behaviour tree is shown that is used by a Border Guard in a security-
sensitive environment, taken from the TRESSPASS3 project.

3.4 Added Functionality for SAFETY4RAILS

To implement the scenarios required for the SAFETY4RAILS project, iCrowd needed to be extended to cover
new functionalities as they were either defined in the tool requirements of D1.4 or needed by the scenarios as
defined in D8.2. The new functionalities are described in the following sections.

3.4.1 Escalators

The 3D models used for  the SAFETY4RAILS simulations feature directional  automatic  escalators with a
staircase between them. Agents moving between floors should use the escalators and stairs as a real person
would. This means that the escalators should be favoured when the congestion levels allow it, and the agent

3 For more information, please visit https://www.tresspass.eu/The-project
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Crossing Point, with the ability to approach a random agent and stop them.
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21

should  always  use  the  escalator  that  is  moving  in  the desired  direction,  while  also  adjusting  its  speed
accordingly.

To  enable  this  functionality,  the  Corridor  Layer  was  developed.  Components  of  the  Corridor  Layer  are
attached to entities to make them behave like escalators. The Corridor Component of an entity is associated
with a set of navigation mesh polygons, specifically the ones that are exactly below it. When the escalator as
an  entity  is  enabled,  its  Corridor  Component  coordinates  with  the  Routing  Layer  to  set  the  associated
navigation mesh polygons to have the correct desired direction and a preset penalty for traversing them in the
wrong direction. This enables agents to assume that traversing those polygons in reverse would have a great
cost, in contrast to traversing them correctly which would have a lower cost than normal. By adjusting the
navigation mesh, we are effectively adjusting the graph on which the Routing Layer runs the A* algorithm
(see Routing via Navigation Mesh), and therefore taking advantage of the already built in functionality.

An escalator entity also sets a reverse direction speed factor on its navigation polygons. This causes agents
that are on an escalator to adjust their speed according to its direction. If they are following the operational
direction  of  the  escalator,  then  the agent’s  speed  is  increased,  thus  simulating  a  person  moving  faster
because they are on an automatic escalator. If the agent is moving in the reverse direction, then its speed is
significantly  decreased,  to  simulate  a  person  trying  to  counter  the  reverse  movement  of  the  automatic
escalator.

Finally, since a corridor can represent any walkable entity, it is also used to implement blocked turnstiles.
Even when the turnstile is an active entity represented by a Checkpoint Component, it  also needs to be
blocked to simulate, for example, a physical or cyber-attack. In this case, no direction is set to the appropriate
polygons, but only a constant speed factor. When the turnstile is set to enforce its speed factor, agents going
through it are forced to walk slower, to simulate them trying to go over it.

All corridors can be deactivated during runtime by the user or as a result of an event. At this point, the area
covered by the corridor can be used normally by the agents. This means that a deactivated escalator can still
be used like normal stairs, by resetting the traversal cost of its navigation polygons and providing no speed
adjustment. A deactivated pair of escalators will also not be chosen according to their operational movement
direction, since it makes no difference if it is stopped.
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The escalators’ functionality was developed in order to provide realistic simulations in the models that were
used for the SAFETY4RAILS simulations. Although not mentioned in this detail in any of D1.4’s requirements,
this functionality was necessary to ensure the proper utilization of all of our models’ assets.

3.4.2 Crowd and object detection

An important functionality that was added to the iCrowd simulator is the crowd and object detection to cover
the tool  requirement  iCrowd_04  (blind  spots)  from D1.4.  Entities  that  represent  static  cameras or  even
moving agents can now access a list of entities that are visible by them based on a field of view, maximum
distance, and obstructions. This functionality is implemented in the Detection module, so an entity that can
detect visible entities is called a “detector”.

A detector continuously watches for other entities (agents or objects) and reports them to the simulation core
via a callback mechanism. Each detector has its own position, heading, field of view, and maximum detection
distance. These can be set during initialization and can be adjusted in real time, either automatically, based
on an event, or manually by the user. Walls and other entities are considered obstacles and may affect the
field of view of the detector. In congested environments or complicated geometries with multiple walls, the
detector's performance can be realistically reduced.

The detection process for each agent is done in steps:

1. The set of entities within a radius equal to its maximum detection distance is retrieved using the
Proximity Layer.

2. The entities are filtered based on their tags, allowing a detector to be set to detect only a certain kind
of entity such as agents, or malicious actors. This can reduce the computational overhead of the
simulation.

3. The rest of the entities are filtered based on the field of view of the detector. This is modelled using
the angle between the heading vector of the detector, and the vector that points to the entity starting
from the detector’s point of view.

4. The remaining entities are filtered for obstructions.
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Figure 6: A guard (blue agent) monitoring an bounded area (marked with green dots, bounded with 
red ones) with normal agents (yellow)
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◦ Other nearby entities are first checked to see if they obstruct the detector’s view to a specific
entity.

◦ If not, the geometry is checked.

5. All registered callbacks are called about entities whose visibility status changed (visible -> not visible,
and vice versa), and the detector’s list of visible entities is updated.

During and after the simulation, iCrowd provides a visualization of the coverage over time or overall, in order
to improve the positioning of CCTV cameras or the movement patterns of guards. This is described in detail
in section Monitored Areas.

The development of the Detection module aimed to satisfy the “iCrowd_04” requirement as per D1.4.

3.4.3 Detection Evasion

So far, iCrowd has been simulating malicious actors by creating specialized behaviours to perform certain
actions. In the real world, a malicious actor might choose to avoid areas that are being monitored by cameras
or guards in order to avoid being detected. In the context of SAFETY4RAILS, the EGO simulation exercise
(see Deliverable D5.7) features malicious actors who are attempting to breach a restricted zone. In that
exercise, iCrowd is employed to determine a CCTV configuration which would adequately detect a malicious
actor attempting such a breach. To implement this, we needed the feature described in the previous section,
but we also needed to program the malicious actors to attempt to evade detection.

To  facilitate  the  functionality  of  detection  evasion,  the  Detection  module  was  extended.  The  Detection
Component of each detector (be it a camera or a guard) continuously marks all navigation polygons that are
visible to it. At each time step, a detector traverses the navigation mesh starting from the polygon that is
closest to it, and marks polygons that are within its field of view and are not obstructed by the geometry or
other entities. According to the polygon’s congestion level (the number of entities currently in it divided by its
area), a polygon might be marked as “partly visible”, thus making it more likely to be used by an agent who is
trying to evade detection and has no better choices. Navigation polygons are easily marked by assigning
flags to them, so the Detection module marks visible polygons by assigning the “monitored” flag to them.
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Figure 7: The trajectory (green line) that a malicious actor (red) will follow to evade 
detection by the guard (blue agent) and the camera (blue box)



24

Using the already developed PathBlock module, an agent can block the “monitored” flag in order to avoid
being routed through areas that are visible by at least one detector. Since this process is based on routing,
and agents are regularly  rerouted to account  for  changes in the environment,  the process of  evasion is
continuous; it repeatedly adapts the path of the malicious actor to avoid not only static cameras, but also
moving detectors such as guards. If there is no path that avoids detection, the malicious actor will take the
path that remains in a monitored area for the least distance.

By setting an agent to avoid the marked polygons, iCrowd simulates a malicious actor who is trying to avoid
being  detected  by  cameras  or  guards,  by  continuously  adjusting  its  path,  even  taking  into  account  the
congestion levels of an area. Finally, the user of the simulation can inspect the movement trajectory of a
malicious  actor  and,  in  combination  with  the  coverage  heatmaps  provided  by  the  Detection  Layer,  can
improve the configuration of the CCTV system or the movement patterns of guards.

The extension of the Detection module was done to enable more realistic behaviours for malicious actors and
to provide more outputs for the functionality defined in the “iCrowd_04” requirement as per D1.4. An example
of this functionality is shown in Figure 7, where the selected red agent at the top, representing a malicious
actor, wants to walk to the yellow agent at the bottom. The blue agent on the left and the blue box on the
column next to the malicious actor represent a guard and a camera, respectively. The green dots on the
ground show the union of the visible areas of the guard and the camera. The green line shows the path that
the malicious agent will follow, in order to avoid walking through the visible areas. If the guard starts moving,
then the malicious agent will adapt its path using the updated visible areas.

3.4.4 Pressure due to Congestion

The iCrowd simulator uses its previously developed Pressure Module to calculate a pressure level for each
agent in the simulation. This pressure level is calculated based on its proximity with nearby agents and their
velocities.  Pressure  forces  are  generated by  every  agent  with  a  non-zero  velocity,  and are  propagated
through them when an agent cannot act on a received pressure (move away from it).

The Pressure Layer can be used to calculate the forces applied to agents in stampede situations, where a
crowd pushes against a bottleneck of the geometry or a closed door, which causes the agents in the front to
experience  high  levels  of  pressure.  This  is  visualized  in  real-time  within  iCrowd  (see  Visualization)  as
changes in the agents’ colours, ranging from yellow (default colour – no pressure) to red (highest pressure),
as shown in Figure 10.

In order to cover the requirements “iCrowd_01” and “iCrowd_02” as per D1.4, the Pressure module was
extended  in  order  to  provide  the  user  with  an  overview  of  pressure  levels,  both  during  and  after  the
simulation, and to be able to save this information for post processing. At each time step of the simulation,
the pressure of each agent is now recorded and can be viewed by the user in iCrowd’s GUI. The maximum
and average pressure levels of agents in each area of the environment are also measured and recorded, and
can be visualized as heatmaps, as described in Pressure Levels.

3.4.5 Native Visualization of Results

All information that is calculated and recorded by iCrowd can be inspected within its own GUI, as described in
Visualization. Statistics that are singular values can be displayed as simple numbers in the respective menus,
while others that might be time-series that are sampled throughout the simulation can be rendered in graph
format  within  the  native  GUI.  iCrowd  can  also  record  trajectories  that  can  be  displayed  on  top  of  the
geometry. The runtime states of an agent can be visualized as changes in its colour (e.g. pressure level), as
a dynamically coloured and sized disk below it (e.g. numerical value retrieved from external software), and as
a bounding box around it (e.g. to indicate that an agent is currently visible by a camera).

In the context of SAFETY4RAILS a mechanism for recording and visualizing heatmaps was developed, which
can be used to inspect various information within the simulation.  This mechanism is based on  3D voxel
grids. A voxel grid covers a subset of the 3D model of the simulation which it divides uniformly across each
axis to form individual sub-areas called voxels. Each voxel is a rectangular box with a predefined size, which
contains information about the area it covers, such as a temperature, congestion level, pressure level, etc.
iCrowd implements 2 types of voxel grids: A vector voxel grid which creates all voxels at initialization and
offers quick and easy access to them, and a sparse voxel grid which creates voxels on demand to support
larger grids that may cover an entire 3D model. Each module of the simulator can create as many grids as
necessary to record and visualize any required information.
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iCrowd also offers a unified way of visualizing voxel grids, since they all provide a common interface. For
each voxel grid that is offered by the simulator’s modules, the user can adjust its visualization using a variety
of colour scales, scaling options, rendering shapes such as box, box outline, top view, etc. Each module
defines  its  own voxel  rendering  function  which,  for  each voxel,  returns  a value in  the range [0,  1]  that
represents its value. This value is then used to calculate the colour of the voxel based on a colour scale
(RGB, white-black, etc.), where in an RGB scale, for example, a value of 0 is represented by the blue colour,
a value of 1 with red, and all intermediate values smoothly go through green, yellow, and orange. The user
can  also  choose  to  aggregate  a  voxel  grid  during  visualization,  to  view  larger  voxels  with  summarized
information.

This  is  linked  to  requirements  “iCrowd_01”,  “iCrowd_02”,  and “iCrowd_04”,  in  the  sense that,  while  the
requirements were already met, we needed a better and unified way of visualizing their results.

3.4.5.1 Congestion Levels

One of the most used features of the iCrowd simulator is the calculation of realistic congestion levels that can
aid in  the detection of  bottlenecks and “hot”  areas,  which can have different  meanings according to the
application. The congestion level of an area, measured as the “number of agents divided by the size of the
area” is something that can be immediately apparent to the user through the visualization of the agents
themselves, albeit without an absolute numerical value. However, the overall congestion levels of each area
are  not  directly  apparent  or  deducible,  and  none  of  this  information  has  any  way  of  being  saved  and
inspected after the simulation.

To facilitate the above needs, the  Proximity Module of the simulation has been extended to maintain a
sparse voxel grid covering only the walkable surfaces of the environment, where each voxel contains the
history of congestion levels for the area it covers. For performance purposes, each voxel also keeps the
maximum congestion level and the sum of all samples that can be used to calculate their average value since
the number of samples is known. The module also keeps a history of the maximum congestion level over the
entire model, to enable the proper scaling of congestion levels at all previous timestamps.
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Figure 8: Example voxel grid visualization from the Proximity Module
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The voxel grid that is maintained by the Proximity Module enables a colour-scaled heatmap-type visualization
of congestion levels covering the entire 3D model. The user can render the following information provided by
the proximity voxel grid:

 Maximum congestion level: The value of each voxel is the overall maximum congestion of that voxel
divided by the maximum respective value of all voxels. As such, the voxel that has had the maximum
overall congestion level across the entire simulation has a value of 1, and all others have a lower
value. The values are normalized by the overall maximum congestion value during the simulation.

 Average congestion level: The value of each voxel is the overall average congestion of that voxel
divided by the maximum respective value of all voxels. As such, the voxel that has had the maximum
average congestion level across the entire simulation has a value of 1, and all others have a lower
value.  The  values  are  normalized  by  the  overall  maximum average  congestion  value  during  the
simulation.

 Congestion  level  at  a  specific  time  step:  Here,  the  user  selects  an  earlier  time  step  of  the
simulation and sees a heatmap of the congestion levels at that time step. The value of each voxel is
its congestion level at that timestamp is normalized by the maximum congestion level of all voxels at
the same time step. A time scaled playback function is also available showing how the crowd moved
throughout the environment.

Other rendering options such as the colour scale, voxel scaling, shape, and aggregation level across each
axis are also available to the user, as part of iCrowd’s unified voxel grid rendering mechanism.

The  extension  of  the  Proximity  Module  was  done  in  the  context  of  the  “iCrowd_01”  and  “iCrowd_02”
requirements as per D1.4.

3.4.5.2 Pressure Levels

Similarly to the Proximity Module, the Pressure Module has also been extended to keep a sparse voxel grid
covering only the walkable surfaces of the environment, where each voxel contains the history of pressure
levels for the area it covers. The pressure voxel grid can provide a colour-scaled heatmap-type visualization
of pressure levels covering the entire 3D model. The user can render the following information:

 Maximum pressure: The value of each voxel is the overall maximum pressure level of that voxel
divided  by  the  maximum  respective  value  of  all  voxels.  The  value  is  normalized  by  the  overall
maximum pressure during the simulation.
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Figure 9: Heatmap of congestion levels in an underground metro station with a box-outline rendering
type
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 Overall Average pressure:  The value of each voxel is the overall  average pressure level of that
voxel  divided  by  the  maximum  average  pressure  level.  The  value  is  normalized  by  the  overall
maximum average value during the simulation.

 Current Average pressure: The value of each voxel is the overall  average pressure level of that
voxel at the point of the simulation divided by the maximum respective value of all voxels. The value is
normalized by the current maximum average pressure.

Other rendering options such as the colour scale, voxel scaling, shape, and aggregation level across each
axis are also available to the user, as part of iCrowd’s unified voxel grid rendering mechanism.

Pressure levels are also visualized by changing the colour of each agent according to the pressure they are
currently experiencing. A colour-scale ranging from yellow (which is the default colour of an agent) to red
(indicating the maximum pressure – 200N) is used, as shown in Figure 10.

3.4.5.3 Monitored Areas

The Detection Module implements a realistic field of view for cameras and guards, as described in section
3.4.2. At each step of the simulation, each detector has a subset of the environment within its field of view,
which may include entities such as agents or other objects, and polygons of the navigation mesh. A rendering
function was added to the module to provide a real-time visualization of the visible entities and areas.

During the simulation, entities that are visible by at least one detector are marked by a green bounding box
around them. Upon selecting a detector, the user can choose to render a bounding box around only the
entities that are visible by this specific detector. This is shown in Figure 6.

In order to inspect the overall  coverage of the environment by detectors, the Detection Module was also
extended to keep its own sparse voxel grid covering only the walkable surfaces of the environment. Each
voxel contains a history of boolean values indicating whether the voxel was visible by any detector at each
point of the simulation, along with the total time for which the voxel has been visible. The detection voxel grid
enables the rendering of a colour-scaled heatmap-type visualization of coverage of the 3D model. The user
can render the following information:

 Overall coverage: The value of each voxel is the time for which it has been visible divided by the total
time that the detection module has been sampling the data, i.e. the total time of the simulation. The
value is normalized by the total duration of the simulation.

 Overall relative coverage: The value of each voxel is the time for which it has been visible divided by
the maximum time that any voxel has been visible. The difference with the “Overall” coverage above
is that this value is normalized by the maximum time that any voxel has been visible, instead of using
the total duration of the simulation.

Note: If there are static cameras that have been enabled at all steps of the simulation, then the voxels
that  are  visible  by  them  will  have  been  visible  for  the  entire  duration  of  the  simulation.  Their
“monitored”  time  will  be  the  maximum  time  by  which  all  times  will  be  divided.  As  such,  this
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Figure 10: Pressure levels of individual agents in a stampede (yellow means
no pressure, red means maximum pressure)
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representation will be the same as Overall as the values will be normalized by the same time, equal
to the duration of the simulation.

 Coverage at a specific time step: Here, the user selects an earlier time step of the simulation and
sees a heatmap of the areas that were covered at that time. The value of each voxel is either 1 or 0,
indicating that, at the selected time step, the area was either visible or not visible by at least one
detector.  A time scaled  playback  function  is  available  showing  how cameras and guards  moved
through the environment.

Other rendering options such as the colour scale, voxel scaling, shape, and aggregation level across each
axis are also available to the user, as part of iCrowd’s unified voxel grid rendering mechanism. A sample
representation of the relative overall coverage is shown in Figure 11.

3.4.6 Integration with DMS

The new DMS Module has been developed within iCrowd to provide an integration with DMS; an Apache
Kafka distributed messaging system. This module implements API calls through HTTPS to Kafka to log in,

subscribe to topics, send messages to topics, and poll for messages from topics. The implementation of the
module is generic, i.e. it does not include any  SAFETY4RAILS-related calls, topic names, responses, etc.
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Figure 12: A GUI window allowing the user to send 
custom messages to the DMS server

Figure 11: Heatmap of detectors' coverage by guards and cameras
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Rather, this information is expected to be provided at runtime by any module that wishes to communicate
with DMS.

For  demonstration  and  debugging  purposes,  the  DMS Module  provides  the  user  with  a  simple  GUI  to
construct and send messages manually to any topic, as well as to read any polled messages. This GUI is
shown in Figure 13 and Figure 12.

In the context of SAFETY4RAILS, the S4R Module has been developed which implements all functionalities
related to the project.  Upon initialization,  the user sets up the DMS Module with a URL, username, and
password. Then, the S4R Module adds the topics it wishes to poll for messages, such as the topic on which
BB3D posts the results of its simulations. When an event happens in the simulation, such as the detonation
of a bomb, the S4R module constructs a JSON message and passes it onto the DMS module to send it to a
specific topic. These interactions with the BB3D tool are described in detail in section 4.1.3.
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Figure 13: The DMS module showing the result of all HTTPS calls made to the 
DMS server
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3.5 Training

The  iCrowd  simulator  aims  to  serve  as  an  intuitive  and  helpful  assessment  tool  to  enable  resilience
capabilities primarily for the phases identification and protection (combined as “prevention” in the MDM and
EGO simulation exercises). The iCrowd simulator can be utilized as an innovative tool for training purposes in
a gamified environment for the railway operators, aiming to provide an intuitive environment that can be used
in the development  of  and evaluation of  railway safety and security design sessions.  As a training tool,
iCrowd  can  help  the  security  operators  evolve  or  sharpen  their  strategic  decision  skills  and  train  their
understanding regarding the related resilience strategies.

The  iCrowd Training Platform follows a  Simulation-as-a-Service model  [19] that  has  been set  up by
NCSRD to provide the iCrowd simulator to end-users or other interested parties as an online service. This
was implemented and tested in the context of the previous EU-funded project TRESSPASS, where, after
following the training process below, the end-users were able to use the iCrowd simulator completely on their
own. Specifically, an isolated, secure, Linux-based, remotely controlled virtual machine (VM) is provided to
each interested party, which is preloaded with the iCrowd simulator and its dependencies. The user requests
a time slot from NCSRD, and is then provided with a URL and a password that can be used to access their
VM from any  web  browser.  Any  modern  consumer-grade  computer  can  be  used,  since  no  specialized
software or hardware is required from the user’s side other than a modern web browser and a stable internet
connection.

The training procedure is comprised of the following phases:

1. Initialization phase: The simulation scenario’s core aspects are defined.

End-users  provide  detailed  scenarios  in  the  same  way  they  did  for  their  physical  pilots,  the
behaviours  of  the  malicious  actors  are  strictly  defined.  The  options  regarding  the  freedom  of
movement of the crowd are examined and defined.

2. Introductory  phase:  End-users  are  introduced  to  the  iCrowd  simulator  and  its  initialization
mechanism by NCSRD.

The  hands-on  introduction  session  is  done  through  a  teleconference,  while  the  trainees  have
access to isolated, remotely controlled, Linux-based virtual machines (VMs) that NCSRD sets up
on a high performance server, so that they can follow along with the trainer’s instructions. Initial
configurations  are  collected,  including  initial  conditions,  camera  configurations,  and  any  other
parameters are given by the end-users.

3. Simulation phase: End-users execute their scenarios with initial configurations and retrieve the
results.

The end-users can execute their scenarios, adjust them and run them again, and extract the results
in CSV files.  The end-user  as the operator  of  the simulator  can observe the execution of  the
simulation in  real  time, get  metrics of  the desired indicators,  and pause,  resume, or  make the
simulation  go  faster  than  in  real-time.  The  operator  can  also  inspect  agents,  cameras,  and
checkpoints, by simply clicking on them and navigating through their settings window. Checkpoints
and cameras can be selectively enabled and disabled, to facilitate what-if scenarios.

4. Result  phase:  End-users  review  and  evaluate  the  results.  If  necessary,  the  configuration
parameters are adjusted and the procedure returns to the Simulation phase until satisfying results
are obtained.

The purpose of the results phase is for the end-users to sharpen their decision-making skills by
analysing  the  outputs  and  trying  different  strategies  with  similar  or  different  configurations.  If
needed, the end-users request more time with the simulator to run further simulations and collect
new results. Finally, the executions’ results are reviewed and conclusions were drawn by experts.
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4 Integration with Other Tools
As already described in  chapter  3,  the iCrowd simulator  features a network communication  system that
enables it to communicate with external tools using a flexible JSON protocol. The simulator also features
connectivity  through  HTTP,  along  with  a  dedicated  implementation  for  connecting  to  an  Apache Kafka
server, such as SAFETY4RAILS’s DMS. This enables iCrowd to integrate with other tools of the project, to
provide a more informed and functionality-rich simulation platform, along with more useful metrics for the end-
users to effectively evaluate their resilience strategies. Other tools can also receive information from iCrowd,
such  as  movement  trajectories,  status  updates  about  agents  or  assets,  or  results.  Since  DMS retains
messages instead of  just  passing them through,  it  is  possible to have both synchronous (real-time) and
asynchronous integrations.

In the context of Task 5.2, the iCrowd simulator has been integrated only with RINA’s BB3D tool and provides
information that is relevant only to that. The integration with BB3D is explained in detail in the next section.

4.1 BB3D

To provide users with a numerical means to approach blast design consequent to a deliberate bomb attack,
an  in-house  predictive  tool  based  on  the  literature  empirical  data  was  developed  by  RINA  (formerly
D’Appolonia)  in  the  framework  of  SECURESTATION (CORDIS  |  European  Commission  (europa.eu)),  a
research co-funded project of the Seventh Framework Programme of the European Commission. Such tool,
referred to as BomBlast3d [16], computes the loading due to the blast wave impact over structures such as
buildings, and supplies the main physical quantities of interest both over the wall surface of three-dimensional
models,  virtually  reproducing  potential  attractive  targets  for  terrorists,  and  in  air.  These  results  can  be
visualised and used to support blast analysts’ assessments and decision makers.

The principal rationale that drove its development is based on the following principles:

1. Minimal set of input data to ease its utilization

2. Fast and stable computing to guarantee the achievement of results in short time

3. Use of open and standard files to limit commercial software restrictions

Considering the rationale for development, BB3D is written in FORTRAN programming language and works
on Windows operating system. It uses open-source (ASCII) files as input (STL) and output (VTK), which can
be  visualised  through  the  open-source  visualization  tool  Paraview  14  [20].  The  computing  is  fast  and
intrinsically  stable because it  uses data referring to hemispherical  surface bursts reported in  the Unified
Facilities Criteria (UFC) manual (Department of Defence).

Considering  the  capabilities  described,  the  use  of  the  proposed  novel  methodology  is  desirable  in  the
preparatory and retrofit design in view of evaluating blast-induced adverse consequences and, accordingly, to
identify and effectively set up the most appropriate protective strategies and countermeasures.

4.1.1 Purpose of Integration

BB3D  was  integrated  with  iCrowd  in  the  context  of  the  MDM  simulation.  The  goal  was  for  iCrowd  to
realistically  simulate the impact  of  a bomb explosion on the crowd and infrastructure,  regarding injuries,
fatalities, and disabled assets of the environment. BB3D provides an on-demand simulation platform that
accepts a request for a bomb explosion, simulates it, and returns the results. The request includes the details
of the bomb, its location in the predefined 3D geometry, and a summary of the crowd distribution around it.
The  results  include  a  3D  voxel  grid  containing  the  pressure  levels  due  to  the  explosion  and  survival
probability of a human at each point in space, and a list of damage levels for each part of the infrastructure.
The detailed communication protocol is described in section 4.1.3.

As a result of this integration, a user of the iCrowd simulator can start a simulation scenario and dynamically
define a place and time for a bomb to be detonated. They can even define multiple bombs, to be detonated at
various times. Then, when the simulation reaches that  point  in time, it  will  be automatically  paused, the
request for the bomb explosion simulation will be automatically sent to BB3D through DMS, and when BB3D
responds  with  the  results  of  the  simulation,  they  will  be  retrieved,  applied,  and  the  simulation  will
automatically continue. Based on the survival probabilities and infrastructure damages sent by BB3D, iCrowd
will automatically apply injury levels to nearby agents, and disable any relevant active assets.
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4.1.2 Visualization

The results of a bomb explosion as calculated by BB3D can be visualized within iCrowd without the need for
external software. The results include a 3D voxel grid, where each voxel represents a rectangular box at a
specific position in space, and contains the level of pressure and survival probability due to the explosion for
that area. This information can be visualized by iCrowd using its unified voxel grid visualization mechanism
(as described in Native Visualization of Results), that allows the user to choose a colour-scale among other
options to efficiently visualize each aspect of the results.

4.1.3 Communication Protocol (API)

To communicate the results of the bomb explosion simulator, BB3D uses sampling across all 3 axes of the
area around the detonation point to create a 3D voxel grid. Each element of the grid corresponds to a voxel; a
cube with a predefined size, that contains information about the area it covers, such as the average pressure
and survival probability. A visualization of the voxel grid can be seen in Figure 14.

The voxel configuration is done on a per model basis, but the only differences are the size of the grid and the
size of the voxels, since the rest of the parameters remain the same. To accommodate the communication of
the grid  (or  parts  of  it),  the  grid  has been linearized by exploiting  the same idea that  is  used in  many
programming languages to map a multi-dimensional array to a one-dimensional array for storing it in memory.
By defining an order  of  the  dimensions (e.g.  first  X,  then Y,  then Z),  a  scan order  for  each dimension
according to its coordinates (e.g. X low-to-high, Y low-to-high, Z high-to-low), and the number of elements for
each dimension (which correspond to the dimensions of the grid), we can express the 3-dimensional voxel
grid as a 1-dimensional array of voxels. Each voxel in the 1-dimensional array can be identified by a single
integer value (index) instead of the 3 indices that would be required in the 3D representation. With the voxel
grid as a 1D array, the required information can be easily communicated between the simulators.

Due to time constraints, the integration with the BB3D tool was done assuming a predetermined 3D model.
As such, the model itself is not part of the communication. However, since both iCrowd and BB3D can easily
be adjusted to use different models, for future integrations it would be beneficial to have the model be a part
of the request message (see below), either as a whole, or as a reference to a shared database of 3D models.

4.1.3.1 Request Message (iCrowd to BB3D)

At the time step of a bomb’s detonation, iCrowd prepares and sends a message to BB3D by posting it on its
topic  on  DMS.  The  message  contains  information  about  the  simulation’s  state  (current  timestamp),  the
bomb(s) (position, heading, type, other parameters), and the crowd’s positions.

Most of the information is quite straightforward and does not need any special  formatting, except for the
crowd’s positions. Since the simulations were expected to run with thousands of agents, it would be inefficient
to create and transfer a message containing the positions of all  agents, due to its large size. As such, a
predefined radius is used to filter the agents whose positions are contained in the message.
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Figure 14: Visualization of BB3D’s results of a bomb explosion
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Overall, the message that is sent by iCrowd to BB3D via DMS has the following format:

{

    “ts”: 11.97,

    "bombs": [                           # List of bombs

        {

            "name": "bomb0",             # Name of bomb (for reference purposes)

            "position": [                # Position of bomb in the model space

                -123.45, 0.0, 123.45

            ],

            "heading": [                 # Heading vector of bomb

                1.0, 0.0, 0.0

            ],

            …                            # Other parameters related to the bomb

        },

        ...

    ],

    "crowdSize": 123

    "crowd": [

        [ -123.45, 0.0, 123.45 ],

        [ -123.45, 0.0, 123.67 ],

        ...

    ]

}

4.1.3.2 Response Message (BB3D to iCrowd)

The information of a single voxel can be serialized as follows:

{

    "peakIncP": 123.45,

    "specIncImp": 123.45,

    "survProb": 100.0

}

Then, a list  of all  voxels can be serialized as a JSON array. Since all  voxels need to be sent, an array
containing all voxels, starting from index 0 and going all the way up to the last, is created and sent, like the
one below.

"voxelsDense": [

    { Information about voxel 0 }

    { Information about voxel 1 }

    ...

    { Information about voxel N-1 }

]
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Since the area that the voxel grid needs to cover depends on the outcome of the explosion, it is decided by
the BB3D simulator. For the grid to be parsed and decoded correctly by iCrowd, the response message
needs to contain the grid’s configuration details. A voxel grid is defined by its width, height, depth, origin
point, and cell size. The voxel configuration is sent using the following format:

"voxelGridConfig": {

    "width": 112,   # The number of voxels across the X axis of the grid

    "height": 13,   # The number of voxels across the Y axis of the grid

    "depth": 80,    # The number of voxels across the Z axis of the grid

    "cellSize": [ 10.0, 10.0, 10.0 ],   # The size of each voxel/cell

    # The position of the first voxel (with index 0)

    "origin": [ -559.15, 0.0, -521.64 ]

}

To  transfer  the  damage  results  of  the  infrastructure,  a  different  approach  is  used.  BB3D  samples  the
environment using the triangles of the geometry, and creates a JSON element for each one. An array of
these elements is transferred to iCrowd, using the following format:

“solidWallResults”: [

    {

        "centrCoords": [

            -83.06,

            21.45,

            0.75

        ],

        ... (Infomration about this triangle)

    },

    { Next triangle },

    { Next triangle }

    ...

]
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Overall, the message that is sent by BB3D to iCrowd via DMS has the following format:

{

    “ts”: 19.97,

    “nextTs”: -1.0,

    “results”: [

        {

            “bombName”: “bomb1”,

            “bombCoords”: [

                -123.45, 0.0, 123.45

            ]

            ... (Bomb information fields),

            “voxelGridConfig”: {

                "width": 10,

                "depth": 10,

                "height": 7,

                "cellSize": [

                    1.75,

                    1.75,

                    1

                ],

                "origin": [

                    -148.74,

                    11.26,

                    0.1

                ]

            },

            “voxelsDense”: [

                { Information about voxel 0 },

                { Information about voxel 1 },

                ...

                { Information about voxel N-1 },

            ]

            “solidWallResults”: [

                { Information about a triangle },

                { Information about another triangle },

                ...

            ]

        }

    ]

}
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5 Summary and Conclusion
In this deliverable report we described the use of the iCrowd simulator in the context of SAFETY4RAILS and
the extensions that were developed as part of Task 5.2.

The report has described the iCrowd simulator on which the simulation platform was built, its modules that
were developed in the context of this project, and its potential use as a training platform. Furthermore, this
deliverable sets out the integration of iCrowd with other tools, along with the potential of integration with more
tools.

Overall, the iCrowd simulator was extended to provide object detection and detection evasion functionalities,
to properly simulate automatic escalators, and to calculate pressure levels among the agents, in order to
incorporate the KPIs that were proposed by NCSRD and the respective end-users. Visualization mechanisms
were also developed into iCrowd to provide a user-friendly visualization of the results in real-time without the
need for specialized external visualization software.

The above functionality was evaluated by 2 scenarios (the MDM and EGO simulation exercises).  These
mainly focused on crowd evacuation, breach of a restricted area by malicious actors, and a bomb explosion
which was simulated by the BB3D tool.  Since this  deliverable  D5.2 is  a public  report,  details  about  the
scenarios that were simulated and their inputs and outputs are presented only in deliverable D5.7 which is
confidential.

5.1 Future work

While the iCrowd simulator was extended to adequately cover the MDM and EGO simulation exercises, there
is  still  the  potential  for  a  more  intelligent,  robust,  and  overall  useful  simulation  platform.  Some  of  the
requirements  were  implemented  but  not  tested  in  the  MDM  or  EGO  simulation  exercises  due  to  time
constraints prohibiting the adjustment of those exercises. These were:

• iCrowd_03  -  Simulate  crowd  behaviour  considering  cyber-agents:  Implement  a  behavioural
model  for  human  agents  based  on  the  default  (from  input),  which  dynamically  adapts  to  new
knowledge. This can happen when the agent has a cyber agent in their field of view which presents
new information (such as an electronic board), or the agent gets in close proximity to another agent
who has already acquired the new information.

• iCrowd_06 - Guards’ distraction simulation: Temporarily deactivate the guard’s ability to report an 
incident and/or act on it, affecting the rest of the simulation and any interfacing with other real 
systems. This can be triggered by time to simulate a cyber attack (assuming the guard receives a call,
noise in their headset, etc.), by interacting with a different agent to simulate a physical attack 
(assuming a co conspirator distracts the guard by talking to them), or periodically or based on real-
time metrics to simulate the guard’s psychological state (tired, anxious, day-dreaming).

Other possible extensions of the iCrowd simulator include behaviours and integrations with external software:

 Intelligent  complex  behaviours  for  agents:  A  sophisticated  behaviour  can  be  modelled  as  a
behaviour-tree  which  will  describe  the  behaviour  of  the  agents.  This  behaviour  can  incorporate
knowledge propagation (requirement iCrowd_03), advanced decision making during an attack, and a
more detailed movement logic within a locked environment (such as the locked station in the MDM
scenario) or a dark environment (such as the cyber-attack in the EGO scenario).

 Explicit behaviours for malicious agents: Make malicious actors in the simulation follow a more
complex behaviour tree, including a more intelligent evasion of cameras and guards by waiting for a
guard to pass instead of continuously walking around them, deliberately mixing into the crowd by
targeting areas with high congestion levels.

 Integrate with CaESAR: Complete the integration that was planned with CaESAR to provide realistic
arrival rates, train schedules, and take into account any externally interconnected infrastructures.

 Tracking  cameras  and  anomaly  detection  for  suspicious  behaviours:  Use  the  movement
trajectories of agents, both malicious and non-malicious,  to train an anomaly detection system to
recognize suspicious behaviours. Use the simulated cameras to remove parts of trajectories of agents
while they are not visible by any, to provide realistic data as they would come from a real tracking
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system. NCSRD has already developed such as a system, that can be extended and improved using
this functionality [21]–[23].
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ANNEX I. LIST OF ABBREVIATIONS

Term Definition/description

API Application Programming Interface

BB3D Bomb-Blast 3D

CCTV Closed-Circuit TeleVision

CSV Comma-Separated Values

DMS Distributed Messaging System

EER Electronics Equipment Room

ETS Emergency Trip System

FIFO First-In-First-Out

GUI Graphical User Interface

HTTP(S) HyperText Transfer Protocol (Secure)

JSON JavaScript Object Notation

KPI Key Performance Indicator

PCR Potentially Colliding Region

TCP Transmission Control Protocol

UC Use-Case

UDP User Datagram Protocol

URL Uniform Resource Locator

VM Virtual Machine

Table 3: List of abbreviations
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